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Abstract. An alternative to introducing and subsequently renormalizing classical parameters in the ex-
pression for the vacuum energy of the MIT bag for quarks is proposed in the massless case by appealing to
the QCD trace anomaly and scale separation due to asymptotic freedom. The explicit inclusion of gluons
implies an unrealistically low separation scale.

1 Introduction

The vacuum energies of spatially confined quantum fields
have been of great interest since the early days of quan-
tum field theory [1,2]. Shortly after the advent of the non-
Abelian gauge theory of strong interactions [3–5], the bag
models of hadrons [6–8] required estimates for the contri-
bution of the spherically constrained vacuum to the total
energy of a hadron. In essence, two lines of approaches
have been pursued in the past. The canonical vacuum en-
ergy was parametrized by means of a dimensionless quan-
tity Z0 to be fitted to experiment [9]. While disregarding
the quadratic boundary condition of the original MIT bag
model, a relation between the bag radius R and the bag
constant B was established by demanding stability of the
calculated hadron mass under variations of R [10]. How-
ever, the quadratic boundary condition of the fermionic
MIT bag model, Bq = − 1

2∂r (ψ̄ψ)
∣∣
r=R

, was introduced
to restore the broken four-momentum conservation of the
bag [6], and thus it should be taken seriously. For a mean-
ingful definition of the bag constant Bq according to the
quadratic boundary condition, the vacuum expectation
value of this operator equation must be taken [11].

There has been a great effort to compute the Casimir
effect of the MIT bag model [11–16]. The vacuum ex-
pectation values of global quantities must be regularized.
Several procedures, adapted to either global or local ap-
proaches, were applied. Global techniques regularize the
sum over mode energies by analytical continuation (zeta-
function method) [13,14,17], while local approaches com-
pute finite densities based on two-point functions. The
space-integral of these densities is regularized by volume
or temporal cutoffs [2,18]. However, different regulariza-
tion schemes yield different answers which is not accept-
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able. Various solutions have been suggested [11,13–15].
For instance, the vacuum energy has been separated into
a classical and a quantum part. The classical contribution
was parametrized by phenomenological quantities to ab-
sorb divergences due to the quantum part by appropriate
renormalizations [13,15]. This procedure relies on direct
experimental information which is unsatisfactory. Inter-
esting results were obtained in the massive case [13,14,
19]. By imposing the condition that the vacuum of a very
massive field should not fluctuate, a unique term in the
canonical vacuum energy, attributed to quantum fluctua-
tions, was isolated.

In this paper we propose an alternative to the above
procedure. Our approach is based on a separation between
the perturbative and nonperturbative regimes of QCD. As
suggested by Vepstas and Jackson in the framework of a
chiral bag model [20], hard fluctuations should be allowed
to traverse the boundary since these fluctuations are not
subject to the low-energy confinement mechanism. In con-
trast to the work of [20], we consider only the interior of
the bag. In the simple model of the QCD vacuum, which
the bag-model philosophy offers, we think of hard fluctu-
ations to be noninteracting and unconfined when calcu-
lating nonperturbative effects, such as the ground state
energy of the bag.

2 Calculation

Our numerical method to compute the regularized canon-
ical vacuum energy and the bag constant of the fermionic
MIT bag was explained in [21]. The procedure is based
on a mode sum representation of the cavity propagator. A
Schwinger parametrization of the Euclidean “momentum-
squared” denominator and a subsequent integration over
the “off-shell” parameter ω are performed.
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2.1 The canonical vacuum energy density

Under the condition, that the free-space vacuum energy
vanishes, we obtain the angular integrated form of the
canonical vacuum energy density

〈
θ̃00

〉
as

〈
θ̃00(r)

〉
≡ 4π

〈
θ00(r)

〉
(1)

=
1

2 π1/2

∫ ∞

1/λ2
dz

1
z3/2

×
[ ∑

κ

1
2

nλ∑
n

1
R3 N 2

n,κ (2J + 1)

(
(jl(|εn,κ|r))2 + (jl̄(|εn,κ|r))2) e−zε2

n,κ

−
∑

l

4
π
(2l + 1)

∫ λ

0
dk k2(jl(kr))2 e−zk2

]
,

J = |κ| − 1
2
, l = |J |+ 1

2
sgn κ , l̄ = l − sgn κ .

Thereby, jl denotes the spherical Bessel function, and the
subscripts n, κ, and µ stand for the radial quantum num-
ber, the Dirac quantum number, and the angular momen-
tum projection, respectively. The radial quantum number
nλ labels the mode energy closest to λ, and N 2

n,κ is a nor-
malization constant (see [21]). In (1) the integral over k
corresponds to the free-space subtraction. Hard fluctua-
tions are excluded by distinguishing two cases: 1) hard
fluctuations with ω, εn,κ > λ or ω ≤ λ, εn,κ > λ are
omitted by truncation of the mode sum, and 2) hard fluc-
tuations with ω > λ, εn,κ ≤ λ are discarded by restriction
of the z-integration. The canonical vacuum energy E is
given by E =

∫ R

0 dr r2
〈
θ̃00(r)

〉
.

2.2 The fermionic bag constant

Due to the vacuum expectation value of the quadratic
boundary condition, the fermionic bag constant Bq reads

Bq = − 1
4π3/2

∫ ∞

1/λ2
dz

1
z1/2

∑
κ

(2J + 1)

×
nλ∑

n>0

1
R3 N 2

n,κ ε
2
n,κe

−zε2
n,κ

×
[jl(|εn,κ|R)

2l + 1
(l jl−1(|εn,κ|R)

−(l + 1) jl+1(|εn,κ|R))

− jl̄(|εn,κ|R)
2l̄ + 1

(
l̄ jl̄−1(|εn,κ|R)

− (l̄ + 1)jl̄+1(|εn,κ|R)) ]
. (2)
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Fig. 1. The canonical part of the one-flavor, one-color vacuum
energy in dependence on the cutoff. Both quantities are given
in units of R−1
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Fig. 2. The one-flavor, one-color fermionic bag constant in
dependence on the cutoff. The bag constant and the cutoff are
given in units of R−4 and R−1, respectively

Figure 1 shows the result of the calculation of Ē ≡ R×E
as a function of λ̄ ≡ R × λ. The discontinuous behavior
is due to the fact that mode eigenvalues at low energies
are not spaced equidistantly. To smooth the “nervous”
behavior, we use a quadratic regression as indicated by
the solid line. In Fig. 2 the λ̄ dependence of B̄q ≡ R4 ×Bq

is depicted. Again, a quadratic fit is used to average over
discontinuities. Tables 1 and 2 contain a list of values for
3 × nf × Bq, −3 × nf × E under variation of R, where λ̄
is adjusted to λ = 1.2 GeV, λ = 1.6 GeV and λ = 0.8
GeV, λ = 1.0 GeV, respectively. Thereby, nf = 2 stands
for the light-flavor multiplicity, and the factor three is the
number of colors.
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Table 1. The dependence of the fermionic bag constant and the canonical part of the fermionic vacuum energy on the cutoff
λ̄ = λ × R for two light-quark flavors with R ranging from 0.4 fm to 1.0 fm. The lower and upper values of λ̄ correspond to
λ = 1.2 GeV and λ = 1.6 GeV, respectively

R [fm] 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ̄ 2.4 3.2 3.0 4.1 3.6 4.9 4.3 5.7 4.9 6.5 5.5 7.3 6.1 8.1
3 × nf × Bq[GeV4] 0.032 0.053 0.024 0.079 0.021 0.089 0.026 0.088 0.028 0.082 0.028 0.075 0.027 0.068
−3 × nf × E [GeV] 0.450 1.060 0.716 1.439 0.942 1.779 1.145 2.095 1.334 2.398 1.513 2.690 1.686 2.976

Table 2. Same as in Table 1. The lower and upper values of λ̄ correspond to λ = 0.8 GeV and λ = 1.0 GeV, respectively

R [fm] 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ̄ 1.6 2.0 2.0 2.5 2.4 3.0 2.8 3.5 3.2 4.1 3.6 4.6 4.1 5.1
3 × nf × Bq [GeV4] 0.129 0.065 0.027 0.011 0.006 0.007 0.003 0.010 0.003 0.012 0.004 0.013 0.005 0.014
−3 × nf × E [GeV] −0.031 0.193 0.154 0.415 0.300 0.597 0.422 0.755 0.530 0.900 0.628 1.034 0.720 1.162

Appealing to the one-loop trace-anomaly [22] of the
QCD energy-momentum tensor θµν

〈
θµ

µ

〉
= −1

8

(
11− nf

2
3

) 〈αs

π
F a

κνF
κν
a

〉
, (3)

we assume for the moment that only quark fluctuations
contribute to the bag constant. Using the fact that the
canonical part of θµν is traceless in the mixed MIT bag
model, we obtain (apart from a sign) the relation

3× nf ×Bq = 0.302×
〈αs

π
F a

κνF
κν
a

〉
. (4)

Thereby, the value of the (renormalization-scale indepen-
dent) gluon condensate [23] is

〈
αs

π F
a
µνF

µν
a

〉
= 0.024 ±

0.012 GeV4. Comparing by means of (4) the central value
of the gluon condensate with the values of 3×nf ×Bq (Ta-
bles 1, 2), which are stable under variation of R, we obtain
agreement for λ = 1.0 GeV and a bag radius R of 0.6 fm.
Given these values of λ and R, the results of Table 2 in-
dicate that −3 × nf × E is close to phenomenologically
obtained values: In [9] Z0 parametrizes the Casimir en-
ergy as −Z0/R. Fits to the hadron spectrum yield values
of about Z0 = 2 [9]. The effect of the center-of-mass con-
tribution to Z0 was found to be of the order of 40% in [24,
25]. In comparison, our value of −3×nf ×E = 0.597 GeV
at R = 0.6 fm corresponds to Z0=1.79 with no center-of-
mass contribution.

2.3 The gluonic bag constant

How do confined gluons alter the results obtained so far?
Analogous to the fermionic case the gluonic bag constant
8 × Bg is defined as the vacuum expectation value of the
following quadratic boundary condition [6]

Bg = −1
4
FµνF

µν =
1
2
(E2 − B2) , (5)

where to lowest order in the coupling the field strength
tensor Fµν is Abelian, and E and B denote the electric

and magnetic field strength, respectively. Appealing in the
sourceless case to the symmetry of Maxwell’s equations
under the duality transformation E = BD , B = −ED, we
obtain due to physical transverse polarizations (TE,TM)
the following expression for Bg in Feynman gauge

Bg =
1

32π3/2

1
R3

∫ ∞

1/λ2
dz

1
z3/2

×
∑

n,J≥1

{
(2J + 1)

[
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n,J)
2j2J(ε
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−z(εTM
n,J )2

− (N TM,D
n,J )2j2J(ε

TM,D
n,J R)e−z(εTM,D

n,J )2
]

+ (N TE
n,J)

2 e−z(εTE
n,J )2

× [
(J+1)j2J−1(ε

TE
n,JR) + J j2J+1(ε

TE
n,JR)

]
− (N TE,D

n,J )2 e−z(εTE,D
n,J )2

×
[
(J+1)j2J−1(ε

TE,D
n,J R) + J j2J+1(ε

TE,D
n,J R)

] }
.

(6)

Thereby, the superscript D indicates that the correspond-
ing eigenvalue has been obtained from the linear boundary
condition nµ(FD)µν = 0 for the dual field strength, and
N TE

n,J (N TM
n,J) denotes the normalization constant for the

corresponding mode. For technicalities concerning Cavity
QCD in Feynman gauge see Refs. [26,27]. In (6), the intro-
duction of the Schwinger parameter z and the subsequent
truncation of the z-integration and mode summation due
to the subtraction of hard fluctuations in the vacuum is
analogous to the fermionic case. Table 3 contains the val-
ues for 8 × Bg under variations of R with λ adjusted to
λ = 0.8 GeV and λ = 1.0 GeV. For radii R less than
R = 0.7 fm there is no contribution from the mode sum
of (6). We find stability for 8×Bg under a variation of R
at R = 0.8 fm with 8 × Bg = 0.0128 GeV4 for λ = 0.8
GeV and with 8 × Bg = 0.0189 GeV4 for λ = 1.0 GeV.
Appealing to the QCD trace anomaly and requiring that
the total bag constant B ≡ 3×nf ×Bq +8×Bg produces
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Table 3. The dependence of the gluonic bag constant on the cutoff λ̄ = λ × R with R ranging from 0.4 fm to 1.0 fm. The lower
and upper values of λ̄ correspond to λ = 0.8 GeV and λ = 1.0 GeV, respectively

R [fm] 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ̄ 1.6 1.8 2.0 2.25 2.4 2.7 2.8 3.15 3.2 3.6 3.6 4.05 4.0 4.5
8 × Bg [GeV4] 0 0 0 0 0 0 0.0133 0.0205 0.0128 0.0189 0.0179 0.0302 0.0191 0.0271

the central value of the gluon condensate, implies λ to
be less than λ = 0.8 GeV. As far as the properties of the
lowest light-flavor resonances are concerned, which are be-
lieved to be strongly correlated with the QCD condensates
of lowest mass-dimension, QCD sum rules [28] suggest the
onset of the perturbative regime at values of about 1.5–1.8
GeV2 of the spectral continuum threshold s0 [23,29–31].
This corresponds to λ=1.22–1.34 GeV. Hence, our value
of λ ≈ 1.0 GeV for the pure quark bag seems already a
bit too small which might be due to the mode sum rep-
resentation of the cavity propagator with implicit spatial
correlations, whereas s0 relates to plane-wave states. Nev-
ertheless, it is hard to accept values of λ lower than 0.8
GeV for the mixed bag.

2.4 The deconfinement phase transition

In the standard fashion [32,33] we now estimate the crit-
ical temperature Tc (no baryonic chemical potential µ) of
a deconfinement phase transition from the bag constant
3 × nf × Bq. For this we take the value nf × B = 0.007
GeV4 for λ = 1.0 GeV, and with

4B != π2T 4
c

(
8
15

+
7
10

)
+B (7)

we obtain Tc = 203.8 MeV. From SU(3) Yang-Mills lattice
simulations one expects a smooth decrease of the gluon
condensate for temperatures near 260 MeV [34]. There-
fore, we would have to correct the bag radius at zero
temperature towards higher values near the phase tran-
sition. For comparison, we determine the critical temper-
ature from the phenomenological value B = 4.54 × 10−4

GeV4 of [9] as Tc = 102.8 MeV. This is too low, since
otherwise the deconfinement phase transition would have
already been seen experimentally [35].

3 Conclusion

In summary, invoking asymptotic freedom and appeal-
ing to the QCD trace-anomaly, the linear and nonlinear
boundary condition of the MIT bag model for quarks pro-
vide a reasonable agreement of the calculated canonical
vacuum energy with that found in hadron phenomenol-
ogy which makes the introduction of phenomenological
parameters redundant. However, the explicit inclusion of
gluons drives the separation scale down to values which
are not acceptable.
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